Finiteness properties of automorphism groups of right-angled Artin groups
نویسندگان
چکیده
منابع مشابه
On Solvable Subgroups of Automorphism Groups of Right-Angled Artin Groups
For any right-angled Artin group, we show that its outer automorphism group contains either a finite-index nilpotent subgroup or a nonabelian free subgroup. This is a weak Tits alternative theorem. We find a criterion on the defining graph that determines which case holds. We also consider some examples of solvable subgroups, including one that is not virtually nilpotent and is embedded in a no...
متن کاملSurface Subgroups of Right-Angled Artin Groups
We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group A(K) has such a subgroup if its defining graph K contains an n-hole (i.e. an induced cycle of length n) with n ≥ 5. We construct another eight “forbidden” graphs and show that every graph K on ≤ 8 vertices either contains one of our examples, or co...
متن کاملPeak reduction and finite presentations for automorphism groups of right-angled Artin groups
We generalize the peak reduction algorithm (Whitehead’s theorem) for free groups to a theorem about a general right-angled Artin group A . As an application, we find a finite presentation for the automorphism group AutA that generalizes McCool’s presentation for the automorphism group of a finite rank free group. We also consider a stronger generalization of peak reduction, giving a counterex...
متن کاملTopology of Random Right Angled Artin Groups
In this paper we study topological invariants of a class of random groups. Namely, we study right angled Artin groups associated to random graphs and investigate their Betti numbers, cohomological dimension and topological complexity. The latter is a numerical homotopy invariant reflecting complexity of motion planning algorithms in robotics. We show that the topological complexity of a random ...
متن کاملPushing fillings in right-angled Artin groups
We define a family of quasi-isometry invariants of groups called higher divergence functions, which measure isoperimetric properties “at infinity.” We give sharp upper and lower bounds on the divergence functions for right-angled Artin groups, using different pushing maps on the associated cube complexes. In the process, we define a class of RAAGs we call orthoplex groups, which have the proper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the London Mathematical Society
سال: 2009
ISSN: 0024-6093
DOI: 10.1112/blms/bdn108